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A wide spectrum of investigations devoted to the determination of natural frequencies and
mode shapes of beams with an open crack are presented in the literature. However, as is well
known, an open crack is a fairly crude model of a fatigue crack. The study of the dynamic
characteristics of a beam with a closing crack is the main aim of the present paper. The
analytical approach which enables one to determine the e!ect of crack parameters (crack
magnitude and location) on di!erent dynamic characteristics of a cantilever Bernoulli}Euler
beam with a closing edge transverse crack is performed. Natural frequencies, mode shapes
and distortion of time functions describing wave shapes of displacement, acceleration and
strain of di!erent cross-sections of a beam are considered as dynamic characteristics to be
investigated. The general solution of the problem is derived from the synthesis of particular
solutions obtained for the crack-free beam and for the beam with an open crack. The
possibility of origination of several modes of vibrations during crack opening is taken into
account as well as the peculiarity of strain distribution in the vicinity of a crack. It is shown
that analytically predicted relationships between the dynamic characteristics of a cracked
beam and crack parameters are well-founded. The analytical approach makes it possible to
solve the inverse problem of damage diagnostics with su$cient accuracy for practical
purposes.

( 2000 Academic Press
1. INTRODUCTION

Dynamic characteristics of a damaged and undamaged body are, as a rule, di!erent. This
di!erence is caused by a change in sti!ness and can be used for the detection of damage and
for the determination of its parameters (crack magnitude and location).

It follows from the Krawczuk and Ostachowicz [1] survey of works dedicated to the
determination of relationships between vibration damage characteristics and crack
parameters that most studies attempt to employ the natural frequency of vibration as
a damage characteristic. However, it should be noted that the results of other experimental
and analytical investigations of the eigenfrequency problem [2}11], mode shapes [12, 13]
or mode shapes and natural frequencies [14}16] of a cracked body were not re#ected in the
survey [1]. In references [1}16] with the exception of references [5, 11] the so-called open
crack was considered. As is well known, an open crack is a crude model of fatigue crack: the
latter must be considered rather as a closing (&&breathing'') one. This assumption is
con"rmed by the results of an experiment reported by Gudmundson [4] who established
that the measured drop in natural frequency of the specimen with a fatigue crack was
considerably less than that predicted theoretically for the beam with an open crack.
022-460X/00/330415#20 $35.00/0 ( 2000 Academic Press
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The results of investigations [17}22] of vibrations of mechanical system, modelling the
body with a closing crack, show that the distortion of wave shapes of di!erent vibration
characteristics is a promising way for diagnostics of fatigue cracks. The distortion of a wave
shape was judged by the presence of higher harmonics in the Fourier-series expansion of the
corresponding time function. In the present paper, this vibration damage characteristic is
examined, as applied to a cracked beam, in parallel with the natural frequencies and mode
shapes.

The accuracy of analytical determination of vibration characteristics of a cracked body
depends mainly on the crack model. A wide spectrum of such models can be found in the
literature: a crack was modelled by a spring [5, 23], elastic hinge [8, 12], cut-out [14], a pair
of concentrated couples [15, 24], a zone with reduced Young's modulus [7, 23], or its e!ect
was taken into account by semi-empirical functions describing stress and strain distribution
by the volume of cracked beam [16, 25]. Chati et al. [26] modelled the process of crack
opening and closing by means of a piecewise-linear system. The approach to crack
modelling presented here is based on the assumption that the beam is of constant
cross-section along the length, and the crack is modelled by a zone with reduced moment of
inertia. The dimensions of this zone are determined from energy criteria [8]. It is presumed
that such a crack model is physically justi"ed inasmuch as the decrease in moment of inertia
and the shift of the neutral axis in the cross-section with a crack in fact take place.

Petroski [24] inferred that the vibration response of a cracked beam to a suddenly
applied and held load demonstrates the e!ect of the crack in introducing the higher
frequency vibrations more noticeably into the total response. This signi"es that the process
of crack opening or closing is the additional cause of the higher mode shapes that appear
under vibrations of the cracked beam and must be taken into account.

The purpose of the present paper is to develop the analytical approach enabling the
simulation of vibration of a beam with a closing edge transverse crack in order to solve
direct (determination of dynamic characteristics of a beam at given crack parameters) and
inverse (estimation of crack parameters by the known values of corresponding dynamic
characteristics) problems of damage diagnostics. The natural frequencies and mode shapes
of a beam and distortion of the displacement, acceleration and strain wave shapes were
chosen as the dynamic characteristics to be investigated.

2. DYNAMIC CHARACTERISTICS OF A BEAM WITH AN OPEN CRACK

Let us consider a cantilever beam of constant rectangular cross-section with a mass on
the end. It is well known that the free bending vibrations of such a beam with the damping
e!ect neglected are described by the di!erential equation

L4y(x, t)

Lx4
#

oA

EI

L2y(x, t)

Lt2
"0, (1)

where E and o are Young's modulus and density of the beam material, respectively,
I"bh3/12 and A"bh are the moment of inertia and area of the cross-section, respectively,
and b and h are the width and height of cross-section respectively.

The general solution of equation (1) can be presented in a following form:
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where w
i
(x) and u

i
are the mode shapes and natural angular velocities, respectively, and i is

the number of the mode shape. The mode shapes of the beam are described by the
expression
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where h is the angle of rotation of the cross-section, M is the bending moment, Q is the
transverse force, ¸ is the length of the beam, m

L
is the mass on the end, and I

m
is the moment

of inertia of the mass.
The characteristic equation in this case assumes the form
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The coe$cients P
i
and R

i
in equation (2) are determined by the formulae [27]
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where m"oA is the beam mass per unit length,

F
1
"P

L

0

my
1
(x)w

i
(x) dx#m

L
y
1
(¸)w

i
(¸)#I

m
h
1
(¸)h

i
(¸),

F
2
"P

L

0

mv
1
(x)w

i
(x) dx#m

L
v
1
(¸)w

i
(¸)#I

mC
Lh(¸, t)

Lt D
t/t1

h
i
(¸),



Figure 1. Geometry of cracked cantilever beam (B is the base of strain guage).
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from the initial conditions for the displacement, velocity and angle of rotation, respectively,
at certain instant of time t

1
:
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Let us consider a beam equivalent to one with an open edge transverse crack (such
a crack is supposed to be open on both half-cycles of vibration) located at a distance ¸

c
from

the clamped end (Figure 1). In this equivalent beam, the crack is modelled by the short
section with reduced moment of inertia of the cross-section (section j"2 in Figure 1). The
dimension of this section 2d is varied, based on the energy criterion the essence of which is
described below. At the same time, the cross-section area of the beam was supposed to be
constant. In such a manner the inertia characteristic of the beam remains unchanged.

Free bending vibrations of each section of the equivalent beam with the damping e!ect
neglected are described by the di!erential equation (1) in which I"I

j
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moment of inertia of the section number j ( j"1, 2, 3), I
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and a is the crack depth (subscript &&o'' signi"es the open crack).
In this case, the general solution of equation (1) for the section number j takes the form
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Expressions for the mode shapes of the equivalent beam must be written for each section as
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Boundary conditions and conditions of compatibility on the boundaries of section j"2
for the equivalent beam with the end mass will appear as
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Taking into consideration the properties of the Krylov functions (S (0)"1;
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The solution of characteristic equation (14) enables one to calculate the natural
frequencies of the beam with an open crack:
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When solving the set of equations by the Gauss method the coe$cient C
i3

is taken to be
the same as in the case of the crack-free beam and in doing so M

i3
(0)"M(0). It is also

assumed that on the boundaries of the section j"2, the cross-sectional moment of inertia is
equal to I.

The reduction of the cross-sectional moment of inertia causes the change in strain energy.
The change in strain energy of the section j"2 of the equivalent beam, if the change in
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bending moment M(x) along the beam length is neglected, is equal to

D;
2
"

12M2d

bh3E C1!
1

(1!c)3D, (16)

where c"a/h. In the linearly elastic body the change of strain energy due to crack presence
of the mode I deformation in the assumption of plane stress will be as follows [28]:
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Here the expression for the stress intensity factor obtained by Cherepanov for the case of
pure bending of a cracked strip [29] is used:
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Inasmuch as in the frequency range being investigated the strain wavelength is greater by
several orders of magnitude than the crack size, the elastic "eld in its neighborhood can be
considered as quasi-static [29]. This makes it possible to neglect the in#uence of the
dynamic e!ect on the stress intensity factor. Substitution of equation (18) into equation (17)
gives
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The energy criterion for equivalence of the cracked beam and its model has the
appearance
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From equation (20) and equations (16) and (19) the parameter d is derived as
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3. DYNAMIC CHARACTERISTICS OF A BEAM WITH A CLOSING CRACK

Consider now a beam with the so-called closing crack; such a crack is supposed to be
open on the half-cycle of vibration and closed on another one. Suppose that at certain initial
instant of time t

1
"!n/2u

s
the crack is closed and that a beam with a closed crack does

not di!er from the crack-free beam. Then the displacement of the beam cross-sections and
their velocities are determined by the expressions
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(sOi), and from equations (7) and (8) it is found that P
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equation (2) simpli"es to the form
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On the other half-cycle, while the crack is open, the equation of vibration takes the form
similar to equation (9):

y
cj
(x, t)"

=
+
i/1

w
ij
(x)(P

ci
sin u

oi
t#R

ci
cosu

oi
t) (25)

(subscript &&c'' signi"es the closing crack). It is assumed that the crack begin to open at the
instance of time t

2
"0; that is when the beam passes through the neutral position. Then,

from equation (24), one can obtain the initial conditions for the beam with closing crack at
the instant of crack opening

y
1
(x)"0, v

1
(x)"u

s
w
s
(x). (26)

With equations (7) and (8), and using equation (26), it is not di$cult to show that R
ci
"0

and

P
ci
"

u
s

u
oi

:Lc~d
0

mw
s
(x)w

i3
(x) dx#:Lc`d

Lc~d
mw

s
(x)w

i2
(x) dx#:L

Lc`d
mw

s
(x)w

i1
(x) dx#F

3
:Lc~d
0

mw2
i3

(x) dx#:Lc`d
Lc~d

mw2
i2

(x) dx#:L
Lc`d

mw2
i1

(x) dx#F
4

,

(27)

where F
3
"m

L
w
s
(¸)w

i1
(¸)#I

m
h
s
(¸)h

i1
(¸), F

4
"m

L
w2

i1
(¸)#I

m
h2
i1

(¸).
Equation (25) is simpli"ed to the form
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Equations (24) and (28) determine the solution for the "rst cycle of vibration. In a similar
way, one can deduce the solution for the second and subsequent cycles. The initial
conditions for the beam at the instant of crack closing are derived from equation (28) and at
the instant of crack opening from equation (2). In the general case, each cycle of vibration
will be described by its own pair of equations (2) and (25). However, this way of solving the
problem discussed is not considered within the framework of the present paper.

This analysis is restricted to the "rst cycle of vibration. As can be seen from equation (28)
the crack opening may generate the concomitant (iOs) mode shapes. The values of
coe$cients P

ci
for di!erent specimens (see Table 1) were calculated with the use of equation

(27) in cases s"1 and 2. As can be seen from Figure 2, the amplitudes of associated second
and third mode shapes are insigni"cant compared with the amplitude of "rst mode shape
(s"1): in this case they do not exceed 2)6% of the "rst mode shape. At the same time, the
amplitudes of associated "rst and third mode shapes are 12)5 and 13)6% of the second mode
shape (s"2), respectively. Note that coe$cients P

ci
(iOs) depend essentially on the crack

location and can in certain cases reach considerable values.



TABLE 1

Geometrical description of the specimens [2, 5, 11, 12]

Material of the Type of ¸ ¸
c
/¸ h b m

L
specimen crack (mm) (mm) (mm) (kg)

Cold rolled steel Closing 330 0 25 25 0
ATSTC-1018 [5] 0)18

Alloy steel 15H2 [11] 184 0)01 13)8 4 0)234
220 0)04 0)154

0)08 0)259
0)14
0)16 0)154
0)28 0)259

Alloy steel 08H18 [11] 150 0)2 20 4 3)520
Steel [12] 300 0)47 20 20 0
Steel [2] Open 200 0)2 7)8 25 0

0)55
0)7

Titanium alloy VT-8 220 0)09 20 4 0)150
[11] 0)18

0)52 0)255
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Thus, if the analysis of the "rst cycle of vibration shows that the amplitudes of associated
mode shapes are insigni"cant (as it takes place for the above-mentioned specimens at s"1)
then the solution for the second half-cycle (28) can be simpli"ed to the form
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The natural frequency of the sth mode shape of the beam with a closing crack may be
calculated by the following formula [30]
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A closing crack causes the distortion of harmonicity of time functions describing the
vibration characteristics of the cracked beam. To determine the distortion of the wave shape
of displacement, strain or acceleration of di!erent cross-sections of the beam by the higher
harmonics method [20, 21] it is necessary to establish equations which connect this wave
shape to crack parameters. From equations (24) and (29) which describe the wave shape of
displacement it is not di$cult to derive the expression for the wave shape of acceleration for
di!erent half-cycles of vibration:
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For di!erent half-cycles of vibration while the crack is closed and open the normalized
distribution function of strain along the beam length can be represented, respectively,



Figure 2. Relative crack depth dependence of the coe$cients P
ci

for the steel ATSTC-1018 (¸
c
/¸"0) (a)}(b),

steel 15H2 (¸"0)184 mm) (c)}(d), and steel 08H18 (e)}(f ); **, i"1; } }} }, i"2 ) ) ) ) ) ), i"3.
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in the form
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where function fe (x, c) takes into account the e!ect of the crack on the strain distribution,
and MM
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(x) are the normalized distribution function of the bending moment

along the length of crack-free and cracked beam, respectively (MM
s
(0)"MM

ij
(0)"1).



Figure 3. Strain distributions in the vicinity of crack on the cracked (a) and uncracked (b) surface of beam
(h"13)8 mm); **, c"0)1, } } } }, c"0)2; } ) } ) }, c"0.4; } ) ) } ) ) }, c"0.6; ) ) ) ) ) ), c"0)8.
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On the cracked surface of the beam, the function fe (x, c) can be represented in
the form

fe (x, c)"1!expA!
2a(c) Dx!¸

c
D

h B, (35)

where a(c)"0)683#0)152/c (at c"0 it is accepted that fe (x, c)"1). Equation (35) is
a result of some modi"cation of the expressions used by Shen and Pierre [16] for the
description of stress and strain distribution along the length of cracked beam (it was
accepted in reference [16] that a"1)276). Finite-element analysis of strain distribution in
the vicinity of the crack enabled determination of the crack depth dependence of this
distribution (Figure 3(a)) and to obtain the function of strain distribution on the surface
opposite to the cracked surface of the beam (Figure 3(b)):

fe (x, c)"1#[b (c)!1]expC!A
¸
c
!x

t (c)h B
2
lnb (c)D, (36)

where b (c)"0)123#0)813exp(c)#0)064exp(7c), t(c)"0)063#0)45c.
As can be seen from Figure 3, the intensity functions fe(x, c) in the vicinity of the crack are

important. Therefore, for strain measurements by strain guages, the location of the strain
guages as well as their base will a!ect the strain wave shape. Averaged over the strain guage
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base, strain wave shapes are determined for the crack-free and cracked beam by the
following expressions respectively:

SM (¸
B
, B)"

1

B
sin u

s
t P

B2

B1

M
s
(x) dx, (37)

SM
cj
(¸

B
, B)"

1

B
P
cs

sin u
os

t P
B2

B1

fe(x, c)MM
sj
(x) dx, (38)

where ¸
B

and B are the strain guage location and base (see Figure 1), B
1
"¸

B
!B/2,

B
2
"¸

B
#B/2.

Thus, the cracked beam model enables the relationships of natural frequencies and mode
shapes with respect to crack depth and location in the case of open or closing edge
transverse cracks to be derived. In addition, the above expressions for the wave shapes of
displacement, acceleration and strain make it possible to investigate the higher harmonics
in the Fourier-series expansion of those expressions for the beam with a closing crack in the
case of the negligible amplitudes of associated mode shapes:

F
c
(x, t)"

a
0
2
#

=
+
n/1

(a
n
cosnu

cs
t#b

n
sin nu

cs
t), (39)

where

a
n
"

u
cs

n

n/u
os

P
0
f (x, t)cos nu

cs
tdt#P

0

f
c
(x, t)cos nu

cs
tdt

!n/u
s

, n"0, 1, 2,2, (40)

b
n
"

u
cs

n

n/u
os

P
0
f (x, t)sin nu

cs
tdt#P

0

f
c
(x, t)sin nu

cs
t dt

!n/u
s

, n"0, 1, 2, 3,2. (41)

For the displacement, the wave shape functions f (x, t) and f
c
(x, t) are determined by

equations (24) and (29) respectively; for the acceleration wave shape by equations (31) and
(32); for the strain wave shape by equations (33) and (34); and for the strain wave shape from
a strain guage by equations (37) and (38).

4. ESTIMATION OF VALIDITY OF THE ANALYTICAL APPROACH

The estimation of the validity of the analytical approach was carried out based on the
comparison of the results of calculations with the results of laboratory tests of the specimens
with fatigue [5, 11] and open [2, 11] cracks. The geometrical characteristics of the
specimens are shown in Table 1.

The results for certain specimens with fatigue (closing) crack are presented in Table 2. As
can be seen, the experimental and predicted values of the relative change of the "rst natural
frequency are very close. Analysis of the results for the alloy steel 15H2 specimens
(¸"220 mm) showed that at c)0)5 the di!erence between the results of experimental and



TABLE 2

Experimental and predicted magnitudes of the relative change of ,rst natural frequency and
crack depths for the specimens with fatigue (closing) crack

Specimen ¸
c
/¸ c f

a
/f D

f
a (mm) D

a
(%) (%)

Experiment Predicted Experiment Predicted

ATSTC-1018 0 0)2 0)924 0)969 !4)8 5 7)8 !56)0
[5] 0)4 0)871 0)873 !0)2 10 10)1 !1)0

0)6 0)725 0)704 2)9 15 14)5 3)3
0)18 0)2 0)947 0)983 !3)8 5 8)6 !72)0

0)4 0)901 0)926 !2)8 10 11)3 !13)0
0)6 0)830 0)802 3)4 15 14)2 5)3

15H2 [11] 0)01 0)18 0)984 0)985 !0)1 2)5 2)6 !4)0
0)36 0)942 0)944 !0)2 4)9 5)0 !2)0
0)46 0)911 0)901 1)1 6)3 6)0 4)8
0)51 0)884 0)872 1)4 7)0 6)7 4)3
0)60 0)797 0)797 0 8)3 8)3 0
0)72 0)655 0)654 0)2 9)9 9)9 0

08H18 [11] 0)2 0)1 0)979 0)995 !1)6 1)9 3)7 !94)7
0)2 0)960 0)976 !1)7 4)0 5)1 !27)5
0)31 0)943 0)943 0 6)1 6)1 0
0)39 0)913 0)903 1)1 7)8 7)4 5)1
0)51 0)845 0)830 1)8 10)1 9)7 4)0
0)6 0)765 0)749 2)1 12)0 11)7 2)5
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analytical determination of the relative change of "rst natural frequency was in the range
!6)4)D

f
)2)1%. At c'0)5 this di!erence was up to !37)8%. In all likelihood, in the

case of a large crack it is practically impossible to avoid plastic strains in the cross-section
weakened by a crack and as a result a closing crack becomes an open one in part or entirely.
Indirectly, this assumption is corroborated by the results of calculations for the alloy steel
15H2 specimens when the crack is open: in this case, the maximal distinction between the
results of experiment and calculation at c'0)5 did not exceed 8)3%.

It is obvious that the choice of the expression for the stress intensity factor will in#uence
the equivalent sti!ness of the cross-section with crack and, consequently, the natural
frequencies and mode shapes. These investigations showed that expression (18) from
Cherepanov [29] gives the best agreement between the results of experiment and
calculation of the natural frequency of the specimens with a closing and with an open crack.
For an open crack the comparison was conducted based on the results of experiments
reported in references [2, 11] (see Table 3).

As seen in Table 3, the distinction between the experimental and predicted results of the
relative change of natural frequencies is even less than in the case of a closing crack, with the
exception of two results for the alloy VT-8 specimen (¸

c
/¸"0)52, c"0)6 and 0)8). Note

that the di!erence between the results of calculations executed by Shen and Pierre [16] with
a local Ritz method and the results of experiment conducted by Wendtland [2] was
somewhat greater (except the third mode o vibration): in the range !1)2)D

f
)11)9% for

the "rst mode, !2)1)D
f
)6)6% for the second mode, and !1)1)D

f
)1)0% for the

third mode of vibration for a relative crack depth 0.13)c)0.8.
The present analytical approach enables one to solve the inverse problem of damage

diagnostics. Thus, based on the results of measurements of resonance frequencies of the
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specimens with fatigue cracks [5, 11] and with sawing cuts [2, 11] the corresponding values
of crack depth were calculated. As seen in Tables 2 and 3, the relative deviation D

a
of the

measured values of crack depth from calculation is inversely proportional to the crack
magnitude. Note that the ellipticity of the fatigue crack front was not considered in the
calculations. In the experiment [11], the crack depth was measured on the side surfaces of
the guage length of the specimen. The investigation of fracture surfaces of the specimens
with fatigue cracks showed that the crack's depth in the middle of crack front was
0)2}0)4 mm greater than the crack's depth on the edges of the front. In all likelihood, this
fact is one of the reasons that in the range of small cracks the distinction between the results
of experiment and calculation is greatest and that calculation gives overestimated values of
crack depth. At the same time, the distinction between the results of experiment and
calculation for the relative change of natural frequency is lowest in the range of small cracks
(c)0)5). This is evident if one compares the corresponding values of D

a
and D

f
in Tables 2

and 3. Consequently, high accuracy of analytical determination of the decrease in natural
frequency does not always signify the same accuracy of crack magnitude determination.
This result con"rms the conclusion of the reference [11].

The authors know of only one experimental investigation of natural mode shapes of
a cantilever beam with a fatigue crack [12] (see Table 1). The calculation of mode shapes for
this beam was executed using expressions (24) and (29) as the mean of values y (x, !n/2u

s
)

and y
cj
(x, n/2u

os
). The results of experiment and calculation are shown in Figure 4. The

analytical approach does not permit complete simulation of the conditions of the test; that
is the displacement of the accelerometer along the length of the beam in the process of
experimental modal analysis. Additionally, even a relatively small mass placed in di!erent
points on the beam will change its mode shapes, especially higher ones. In all likelihood, this
Figure 4. Measured [12] (**) and predicted (} } } }) "rst (a) and second (b) mode shapes (c"0)4, ¸
c
/¸"0)47).



Figure 5. Strain wave shape on the uncracked (**) and cracked (} } } }) surface of the steel 08H18 specimen
(c"0)39, ¸

B
/¸"0)47).
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circumstance is the chief cause of the somewhat greater di!erence between the results of the
experiment and the calculation for the second mode shape.

As is well known, the presence of a crack distorts the wave shape of any characteristic of
vibration of the cracked beam; that is, for example, displacement, velocity, acceleration,
strain etc. In Figure 5, the time function of strain (¸

B
"42)5 mm, strain guage glued on the

cracked side of the specimen) is shown for the crack-free and cracked steel 08H10 specimen.
One can evaluate this distortion by the amplitudes and phases of higher harmonics in the
Fourier-series expansion of corresponding time functions.

An experimental procedure for harmonic analysis of stress and strain wave shapes [31]
was used for the detection of higher harmonics in the Fourier-series expansion of strain and
acceleration wave shapes on tests of the specimens [11] (see Table 1) at the "rst mode of
vibration (s"1). Strain measurements were carried out with foil strain guages (B"5 mm).
For the acceleration measurement an accelerometer (Bruel & Kjaer, Type 4370) was
attached to the end of the specimens.

As may be seen from Figures 6 and 7, good agreement between the results of experiment
and calculation for the amplitude of the second harmonic of the strain wave shape (in
Figures 6}9 the amplitudes of higher harmonics are shown relative to the amplitude of the
"rst harmonic b

1
).

On the alloy steel 08H18 specimen the strain guage was glued on the surface with the
crack and on the alloy steel 15H2 specimens on the opposite from the cracked side surface.
In certain cases, the quantitative di!erence between the results of experiment and
calculation was considerable as, for example, for the zero harmonic a

0
(steel 08H18,



Figure 6. E!ect of crack depth on the amplitudes of higher harmonics in strain wave shape on the uncracked
side surface of the steel 08H18 specimen (¸

B
/¸"0)283); j, ***, a

0
/b

1
; d, }} } }, a

2
/b

1
; m, ) ) ) ) ) ), b

2
/b

1
(symbols*experiment, curves*predicted).
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Figure 6). However, it is necessary to emphasize that all analytically predicted relationships
describe the results of experiment qualitatively. The illustration of the strain guage
location e!ect (¸

B
$1 mm) on the amplitude of the second harmonic is shown in

Figure 7 (this was the simulation of possible error of the value ¸
B

measurement in the
experiment). As may be seen, the e!ect of measurement error of parameter ¸

B
on higher

harmonics is small. Analytical investigations showed that this e!ect decreases abruptly as
the strain guage location is moved way from the cross-section with a crack and may be
neglected.

An analytical investigation of higher harmonics in the acceleration wave shape also was
conducted. As seen in Figures 8 and 9, good qualitative agreement between the results of
calculation and experiment is observed for the second harmonics and zero harmonic of the
acceleration wave shape. Similar results were obtained for other specimens with a closing
crack.

For the specimens with an open crack (alloy VT-8) the results of calculation and
experiment are su$ciently close inasmuch as the analytical approach does not show zero
and higher harmonics in strain and acceleration wave shape. Experiment also showed that
the amplitudes of the harmonics are close to zero (the error of experimental procedure of
zero harmonic measurement may be high because of uncontrollable zero drift of ampli"ers).

Quantitative di!erences between the results of calculation of higher harmonics in strain
and acceleration wave shapes and corresponding experiment may be connected with the
possible e!ect of damping, impact of crack surfaces, ellipticity of crack front, or
measurement error of dynamic characteristics.



Figure 7. E!ect of crack depth on the amplitude of second harmonic a
2
/b

1
in strain wave shape on the

uncracked side surface of the steel 15H2 specimen (¸"200 mm); j, ***, ¸
B
"9)5 mm, } ) } )}, ¸

B
"8)5 mm,

} ) ) } ) ) }, ¸
B
"10)5 mm, ¸

c
/¸"0)04; m, ¸

B
"10 mm, ¸

c
/¸"0)28 (symbols*experiment, curves*predicted).

Figure 8. E!ect of crack depth on the amplitudes of higher harmonics in acceleration wave shape for the 08H18
specimen; j, ***, a

0
/b

1
; m, ) ) ) ) ) ), a

2
/b

1
; d, } } } }, b

2
/b

1
; (symbols*experiment, curves*predicted).
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Figure 9. E!ect of crack depth on the amplitudes of higher harmonics in acceleration wave shape for the steel
15H2 specimen (¸"220 mm, ¸

c
/¸"0)28); j,***, a

0
/b

1
; m, ) ) ) ) ) ), a

2
/b

1
; d, } } } }, b

2
/b

1
; (symbols*experi-

ment, curves*predicted).
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5. CONCLUSIONS

An analytical approach that enables investigation of dynamic characteristics of a beam
with a closing (fatigue) crack is developed.

It is shown that in the process of the crack opening the origination of associated mode
shapes di!ering from the initially given mode shape takes place. In the case of the initially
given "rst mode shape (s"1), the amplitudes of higher mode shapes are relatively small. In
the case of the initially given second or more higher mode shape, the amplitudes of
associated mode shapes under certain conditions can be comparable with the amplitude of
the initially given mode shape.

The predicted values of natural frequencies and mode shapes for the specimens with
a fatigue crack are close to those obtained experimentally, as well as the results of
calculation and experimental estimation of distortion of strain and acceleration wave
shapes. The veri"cation of the analytical approach with a considerable amount of
experimental data and with the results of other author's calculations showed that the
analytical approach enables one to obtain well-founded relationships between di!erent
dynamic characteristics and crack parameters and to solve the inverse problem of damage
diagnostics with su$cient accuracy for practical purposes.
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APPENDIX A: NOMENCLATURE

a crack depth
A beam cross-sectional area
b width of cross-section
B base of strain guage
d parameter to be determined
E Young's modulus
f resonance frequency of crack-free specimen
f
a

resonance frequency of cracked specimen
h height of cross-section
i number of mode shape
I crack-free cross-sectional area moment of inertia
I
m

end mass moment of inertia
I
o

cracked cross-sectional area moment of inertia
K

I
(a) stress intensity factor

¸ length of beam
¸
c

co-ordinate of the cross-section with crack
¸
B

location of strain guage
m beam mass per unit length
m

L
end mass

M(x) bending moment
Q(x) transverse force
s initially given mode shape
S Krylov function
¹ Krylov function
; Krylov function
< Krylov function
v(x) velocity
w(x) mode shape of a beam
y(x) displacement
D
a

relative distinction between the results of experiment and calculation of the crack depth
D
f

relative distinction between the results of experiment and calculation of the relative
change of natural frequency

c relative crack depth
h(x) angle of rotation
o density
u natural frequency of the crack-free beam
u

o
natural frequency of the beam with open crack

u
c

natural frequency of the beam with closing crack
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